

Object pH Dependent Leaching Test Model

Red Mud

Name

pH Dependent Leaching Test Scenario

Lab Test

Extra L/S Simulation

Lab Test									
Model Parameters			Available Content	:					
Entity	Unit	Default	Entity	mg/kg	Entity	mg/kg	Entity	mg/kg	
c0		-3.777	AI	2.103E+04	В	4.877	Sb	0.03929	
c1		-2.507	As	5.459	Si	1.504E+04	Se	9.886	
c2		0.5249	Ba	3.609	Hg	0.0009279	Sn	0.2910	
c3		-0.04144	Br	35.00	К	259.9	SO4	4940	
c4		0.001130	Ca	1.415E+04	Li	0.2493	Sr	92.09	
c5		0	Cd	0.0003107	Mg	568.0	Th	4.780	
Clay	mg/kg	1.000E+04	CI	2046	Mn	2.596	U	1.771	
Hydrous Ferric Oxide	mg/kg	1200	Со	0.06989	Mo	14.07	V	41.69	
L/S	L/kg	10.35	CO32-	1.994E+04	Na	3.904E+04	Zn	0.2000	
pE		-0.5000	Cr	2.919	Ni	0.3826			
рН		12.04	Cu	2.649	NO3	0.7000			
Solid Humic Acid	mg/kg	120.0	F	274.9	Pb	20.01			
Simulated Low L/S	L/kg	0.4000	Fe	208.6	PO4	550.0			
Solid Solutions									
End Member	Log(K)	Reaction					End Member	Log(K)	R
AsO4_Ettringite_ss	26.79	AsO4_Ettringite_ss +	- 1 H+ + 8 H2O -> 2	2 AI[OH]4- + 3 AsO4-3	+ 6 Ca+2 + 1 e	ttr_ss	MoO4_Ettringite_ss	-9.592	N
Ba_Ettringite_ss	4.008	Ba_Ettringite_ss + 4	Ba_Ettringite_ss + 4 H+ + 8 H2O -> 2 AI[OH]4- + 6 Ba+2 + 3 SO4-2 + 1 ettr_ss PO4_F				PO4_Ettringite_ss	39.10	P
BO3_Ettringite_ss	-46.87	BO3_Ettringite_ss +	7 H+ + 8 H2O -> 2	AI[OH]4- + 6 Ca+2 + 3	8 H2BO3- + 1 et	tr_ss	Sb[OH]6Ettringite_ss	-33.80	S
CrO4_Ettringite_ss	-8.592	CrO4_Ettringite_ss +	4 H+ + 8 H2O -> 2	2 AI[OH]4- + 6 Ca+2 +	3 CrO4-2 + 1 et	ttr_ss	SeO4-2_Ettringite_ss	4.408	Se
Ettringite_ss	-10.99	Ettringite_ss + 4 H+ + 8 H2O -> 2 AI[OH]4- + 6 Ca+2 + 3 SO4-2 + 1 ettr_ss Sr_Ettringite_ss						4.008	Si

ZnSiO3

Ettringite_ss Minerals

Name	Log(K)	Reaction
AA_OH-hydrotalcite[cr]	-27.97	AA_OH-hydrotalcite[cr] + 6 H+ -> 2 Al[OH]4- + 9 H2O + 4 Mg+2
Albite[low]	85.27	Albite[low] + 8 H2O -> 1 Al[OH]4- + 6 H+ + 3 H2SiO4-2 + 1 Na+
Arsenocrandallite-therm	95.56	Arsenocrandallite-therm + 6 H2O -> 3 Al[OH]4- + 2 AsO4-3 + 1 Ca+2 + 7 H+
BaCaSO4[50%Ba]	7.412	BaCaSO4[50%Ba] -> 0.5 Ba+2 + 0.5 Ca+2 + 1 SO4-2
beta-TCP	28.93	beta-TCP -> 3 Ca+2 + 2 PO4-3
Ca[OH]2.Cu[OH]2	-28.52	Ca[OH]2.Cu[OH]2 + 4 H+ -> 1 Ca+2 + 1 Cu+2 + 4 H2O
Ca[OH]2.Sn[OH]4	-39.40	Ca[OH]2.Sn[OH]4 + 6 H+ + 2 e> 1 Ca+2 + 6 H2O + 1 Sn+2
Ca2Pb[PO4]2	36.87	Ca2Pb[PO4]2 -> 2 Ca+2 + 2 PO4-3 + 1 Pb+2
CaCO3_BaCO3	23.00	CaCO3_BaCO3 -> 1 Ba+2 + 2 CO3-2 + 1 Ca+2
CaCO3_SrCO3	19.85	CaCO3_SrCO3 -> 2 CO3-2 + 1 Ca+2 + 1 Sr+2
Carnotite	-3.015	Carnotite + 4 H+ + 1 e> 2 H2O + 1 K+ + 1 UO2+ + 1 VO2+
Cem07_Al[OH]3[am]	13.76	Cem07_Al[OH]3[am] + 1 H2O -> 1 Al[OH]4- + 1 H+
Cem07_C2ASH8	17.40	Cem07_C2ASH8 -> 2 AI[OH]4- + 2 Ca+2 + 3 H2O + 1 H2SiO4-2
Cem07_Calcite	8.485	Cem07_Calcite -> 1 CO3-2 + 1 Ca+2
Cem07_Gypsum	4.583	Cem07_Gypsum -> 1 Ca+2 + 2 H2O + 1 SO4-2
CEM14_C3FS0.84H4.32	-1.915	CEM14_C3FS0.84H4.32 + 2.32 H+ -> 3 Ca+2 + 2 Fe[OH]4- + 5.68 H2O + 0.84 H2SiO4-2
Co2SiO4	6.289	Co2SiO4 + 2 H+ -> 2 Co+2 + 1 H2SiO4-2
Fe2[MoO4]3[2]	86.35	Fe2[MoO4]3[2] + 8 H2O -> 2 Fe[OH]4- + 8 H+ + 3 MoO4-2
FeAsO4:2H2O_am	49.70	FeAsO4:2H2O_am + 2 H2O -> 1 AsO4-3 + 1 Fe[OH]4- + 4 H+

End Mombor		Deastion
		Reduction MoOA Ettringite $cc + 4 H + + 8 H = 0$ > 2 AllOH $H + 6 C = + 2 + 2 M = 0.4 + 1 ottr cc$
NOO4_Ettringite_ss	-9.392	$PO4_Ettringite_{33} + 4 H + 8 H 20 > 2 Al[OH]4 + 6 Ca+2 + 3 M004+2 + 1 ettr_{33}$
PO4_Ettringite_ss	39.10	PO4_Ettimigtie_SS + 1 H+ + 8 H2O -> 2 Al[OH]4 + 8 Ca+2 + 3 PO4-5 + 1 etti_SS
SD[OH]6Ettringite_ss	-33.80	SD[OH]6Ettringite_SS + 7 H+ + 17 H2O -> 2 Al[OH]4- + 6 Ca+2 + 3 SD[OH]6- + 1 ettr_SS
SeO4-2_Ettringite_ss	4.408	SeU4-2_Ettringite_ss + 4 H+ + 8 H2U -> 2 Al[UH]4- + 6 Ca+2 + 3 SeU4-2 + 1 ettr_ss
Sr_Ettringite_ss	4.008	Sr_Ettringite_ss + 4 H+ + 8 H2O -> 2 AI[OH]4- + 3 SO4-2 + 6 Sr+2 + 1 ettr_ss
Name	Log(K)	Reaction
Ferrihydrite	16.71	Ferrihydrite + 1 H2O -> 1 Fe[OH]4- + 1 H+
FeVO4:2H2O_am	23.48	FeVO4:2H2O_am + 2 H2O -> 1 Fe[OH]4- + 1 VO2+
Fluorite	10.96	Fluorite -> 1 Ca+2 + 2 F-
Hxyapatite[2]	38.15	Hxyapatite[2] + 1 H+ -> 5 Ca+2 + 1 H2O + 3 PO4-3
LDH_Co_zc	60.01	LDH_Co_zc + 1 H2O -> 1 AI[OH]4- + 3 CO3-2 + 3 Co+2 + 1 H+
LDH_Cu_zc	58.21	LDH_Cu_zc + 1 H2O -> 1 AI[OH]4- + 3 CO3-2 + 3 Cu+2 + 1 H+
LDH_Mn_zc	10.21	LDH_Mn_zc + 3 H+ -> 1 Al[OH]4- + 1 CO3-2 + 3 H2O + 3 Mn+2
LDH_Ni_zc	57.91	LDH_Ni_zc + 1 H2O -> 1 Al[OH]4- + 3 CO3-2 + 1 H+ + 3 Ni+2
Li2_CaO_Al2O3_SiO2_8H2O[s]	22.69	Li2_CaO_Al2O3_SiO2_8H2O[s] -> 2 Al[OH]4- + 1 Ca+2 + 3 H2O + 1 H2SiO4-2 + 2 Li+
MnHPO4[C]	25.40	MnHPO4[C] -> 1 H+ + 1 Mn+2 + 1 PO4-3
Molybdocrandallite-exp	86.00	Molybdocrandallite-exp + 6 H2O -> 3 Al[OH]4- + 1 Ca+2 + 7 H+ + 3 MoO4-2
Ni[OH]2[s]	-10.80	Ni[OH]2[s] + 2 H+ -> 2 H2O + 1 Ni+2
Pb[OH]2[C]	-8.150	Pb[OH]2[C] + 2 H+ -> 2 H2O + 1 Pb+2
PbMoO4[c]	15.80	PbMoO4[c] -> 1 MoO4-2 + 1 Pb+2
Schoepite	-8.189	Schoepite + 2 H+ + 1 e> 3 H2O + 1 UO2+
Sn[OH]2[s]	1.447	Sn[OH]2[s] + 2 H+ -> 2 H2O + 1 Sn+2
Strengite	48.00	Strengite + 2 H2O -> 1 Fe[OH]4- + 4 H+ + 1 PO4-3
UO2CO3[s]	18.67	UO2CO3[s] + 1 e> 1 CO3-2 + 1 UO2+

- ZnSiO3 + 1 H2O -> 1 H2SiO4-2 + 1 Zn+2 18.69

Model Comparison: residuals - Concentration

Name Red Mud

Y Values Interpolation Type

Logarithmic

Legend

Total Average Deviation Square root of the sum of the squared values of residuals divided by the number of values, over the entire X range. User Average Deviation Square root of the sum of the squared values of residuals divided by the number of values, over the user defined X range. Fractional Average Devi Square root of the sum of the squared values of residuals divided by the number of values, over the fraction. Note that the Total and User Average Deviation columns are averages as well.

Residual details, concentrations

Residua	ls as l	log(moc	lel/	'samp	le))
---------	---------	---------	------	-------	-----	---

Fraction	8	7	6	5	4	3	2	1	Total Avg
pН	2.04	4.07	5.97	7.15	8.06	10.1	11.0	12.0	Deviation
Al	0.03	-0.34	0.50	-0.99	-1.31	-1.09	-0.89	-0.08	0.28
As	0.34	-2.42	-0.22	0.44	1.36	0.79	0.31	-0.04	0.37
Ва	0.03	0.13	1.55	-0.18	-0.30	-0.27	-0.24	-1.29	0.26
Br	-	-	-	-	-	-	-	-	-
Ca	0.03	0.36	0.74	-0.17	-0.17	0.36	0.45	-0.56	0.15
Cd	0.08	0.07	-0.02	-0.59	-1.21	-1.21	-1.19	-1.33	0.32
Cl	-0.05	0.05	0.02	0.01	-0.15	0.01	0.01	-0.03	0.02
Co	0.03	0.45	1.40	-0.30	-0.95	-0.55	0.40	0.96	0.27
CO32-	-	-	-	-	-	-	-	-	-
Cr	-0.03	-0.40	-0.19	-0.51	-1.09	0.35	0.77	0.77	0.21
Cu	0.03	0.83	1.34	-0.33	-0.63	-0.22	0.97	1.15	0.29
F	0.03	0.63	1.49	0.83	0.47	-0.30	-0.39	0.19	0.24
Fe	0.06	-1.16	-0.57	-0.63	0.04	-0.06	1.68	2.29	0.40
В	0.04	0.28	0.00	0.48	0.60	0.37	0.22	0.23	0.12
Si	0.03	-1.60	0.15	-0.28	-0.36	-0.63	-0.34	0.79	0.25
Hg	0.10	-0.94	-2.18	-0.87	-0.33	-0.01	0.03	0.03	0.32
к	-0.38	0.00	0.14	0.12	-0.04	0.03	0.02	-0.03	0.05
Li	0.03	0.37	0.78	1.00	1.08	0.88	1.33	0.41	0.30
Mg	0.03	0.35	1.59	0.98	1.46	0.83	-0.74	-2.26	0.43
Mn	0.03	0.31	0.39	0.51	2.15	-1.04	-1.02	-1.47	0.38
Мо	2.16	-1.44	0.89	0.42	-0.02	0.03	0.02	-0.03	0.35
Na	-0.09	-0.05	-0.02	0.00	-0.01	0.00	-0.01	-0.08	0.02
Ni	0.03	0.29	1.28	-0.34	0.14	-0.50	-0.17	0.30	0.19
NO3	0.43	0.43	0.43	0.43	0.43	0.43	0.43	-1.92	0.28
Pb	2.68	2.13	-0.41	-0.35	0.30	0.02	0.15	1.61	0.48
PO4	0.61	-0.36	2.58	1.70	1.34	-0.18	-2.60	-2.06	0.60
Sb	0.27	0.27	0.00	0.27	0.27	0.27	0.27	0.27	0.09
Se	0.28	0.36	0.33	0.03	0.13	0.06	0.01	-0.03	0.07
Sn	0.70	-1.67	0.23	0.23	0.85	0.62	0.61	-0.16	0.28
SO4	0.03	0.23	0.61	0.40	0.20	0.29	0.28	0.27	0.12
Sr	0.03	0.35	0.97	-0.37	-0.27	0.38	0.80	-0.20	0.18
in 	-0.17	0.30	1.85	1.28	0.39	0.67	0.76	0.66	0.33
U	0.01	0.60	2.23	0.20	-0.21	0.65	0.63	2.30	0.42
v	0.03	0.04	0.90	0.62	1.53	-0.40	-0.82	-0.58	0.27
Zn	0.11	0.35	0.35	-0.12	-0.47	-1.16	-1.02	-0.19	0.21
Avg Deviati	0.11	0.15	0.19	0.11	0.14	0.10	0.14	0.18	0.26

Yellow = own pH All residuals within + 1 or - 1 are considered to represent a good fit.