

Object pH Dependent Leaching Test Model Name Vitrified MSWI Fly ash TW

pH Dependent Leaching Test Scenario

Lab Test

Lab Test Model P

Extra L/S Simulation

Model Parameters			Available Content								
Entity	Unit	Default	Entity	mg/kg	Entity	mg/kg	Entity	mg/kg			
c0		-3.484	AI	96.03	Fe	107.7	Р	2.743			
c1		-3.047	As	0.4709	В	5.293	Sb	0.5287			
c2		1.221	Ва	4.159	Si	122.1	Se	0.04775			
c3		-0.2073	Br	7.990E-09	Hg	2.006E-08	Sn	0.05350			
c4		0.01534	Ca	47.32	К	132.1	S	2.430			
c5		-0.0004075	Cd	0.01920	Li	0.02880	Sr	0.2204			
Clay	mg/kg	1000	Cl	124.3	Mg	4.381	Th	2.320E-08			
Hydrous Ferric Oxide	mg/kg	60.00	Со	0.5856	Mn	3.662	U	2.380E-08			
L/S	L/kg	10.02	CO32-	275.0	Mo	0.1313	V	0.02030			
pE		6.330	Cr	1.394	Na	81.78	Zn	12.46			
рН		7.270	Cu	29.63	Ni	21.41					
Solid Humic Acid	mg/kg	300.0	F	1.900E-09	Pb	4.453					
Simulated Low L/S	L/kg	0.4000									
Minerals											
Name	Log(K)	Reaction					Name	Log(K)	Reaction		
AA_Fe[OH]3[am]	16.60	AA_Fe[OH]3[am] + 1 H2O -> 1 Fe[OH]4- + 1 H+					Eskolaite	139.5	Eskolaite + 5 H2O -> 2 CrO4-2 + 10 H+ + 6 e-		
Anorthite	63.81	Anorthite + 8 H2O -> 2 Al[OH]4- + 1 Ca+2 + 4 H+ + 2 H2SiO4-2					Exp_CaCO3_BaCO3	21.30	Exp_CaCO3_BaCO3 -> 1 Ba+2 + 2 CO3-2 + 1 Ca+2		
Arsenocrandallite-thern	95.56	Arsenocrandallite-therm + 6 H2O -> 3 Al[OH]4- + 2 AsO4-3 + 1 Ca+2 + 7 H+				7 H+	Exp_FeVO4:2H2O_am	23.48	Exp_FeVO4:2H2O_am + 2 H2O -> 1 Fe[OH]4- + 1 VO2+		
Ba[SCr]O4[96%SO4]	9.790	Ba[SCr]O4[96%SO4] -> 1 Ba+2 + 0.04 CrO4-2 + 0.96 SO4-2					Li-Albite[low2] ۶		Li-Albite[low2] + 8 H2O -> 1 Al[OH]4- + 6 H+ + 3 H2SiO4-2 + 1 Li+		
CaCO3_Li2CO3	21.30	CaCO3_Li2CO3 -> 2 CO3-2 + 1 Ca+2 + 2 Li+					Manganite	-25.27	Manganite + 3 H+ + 1 e> 2 H2O + 1 Mn+2		
CaCO3_MgCO3-exp	18.02	CaCO3_MgCO3-exp -> 2 CO3-2 + 1 Ca+2 + 1 Mg+2					Ni[OH]2[s]	-10.80	Ni[OH]2[s] + 2 H+ -> 2 H2O + 1 Ni+2		
CaCO3_MnCO3-exp	20.78	CaCO3_MnCO3-exp -> 2 CO3-2 + 1 Ca+2 + 1 Mn+2					PATCH_beta-TCP	28.93	PATCH_beta-TCP -> 3 Ca+2 + 2 PO4-3		
CaCO3_SrCO3	19.85	CaCO3_SrCO3 -> 2 CO3-2 + 1 Ca+2 + 1 Sr+2					Pb[OH]2[C]	-8.150	Pb[OH]2[C] + 2 H+ -> 2 H2O + 1 Pb+2		
Cem07_AI[OH]3[am]	13.76	Cem07_Al[OH]3[am] + 1 H2O -> 1 Al[OH]4- + 1 H+					PbMoO4[c]	15.80 PbMoO4[c] -> 1 MoO4-2 + 1 Pb+2			
Cem07_Brucite	-16.83	Cem07_Brucite + 2 H+ -> 2 H2O + 1 Mg+2					PbOH[Sb[OH]6]_exp1	12.00	PbOH[Sb[OH]6]_exp1 + 1 H+ -> 1 H2O + 1 Pb+2 + 1 Sb[OH]6-		
Cem07_C4FcH12	-20.47	Cem07_C4FcH12 + 4 H+ -> 1 CO3-2 + 4 Ca+2 + 2 Fe[OH]4- + 10 H2O					Sn[OH]2[s]] 1.447 Sn[OH]2[s] + 2 H+ -> 2 H2O + 1 Sn+2			
Cem07_Calcite	8.485	Cem07_Calcite -> 1 CO3-2 + 1 Ca+2					Strengite	48.00	Strengite + 2 H2O -> 1 Fe[OH]4- + 4 H+ + 1 PO4-3		
Cem07_SiO2[am]	24.21	 Cem07_SiO2[am] + 2 H2O -> 2 H+ + 1 H2SiO4-2					Wairakite	113.6	113.6 Wairakite + 10 H2O -> 2 Al[OH]4- + 1 Ca+2 + 8 H+ + 4 H2SiO4-2		
Co2SiO4	6.289	Co2SiO4 + 2 H+ -> 2 Co+2 + 1 H2SiO4-2					Willemite	6.289	Willemite + 2 H+ -> 1 H2SiO4-2 + 2 Zn+2		
Cu[OH]2[s]	-8.640	Cu[OH]2[s] + 2 H+ ->	1 Cu+2 + 2 H2O								

Model Comparison: residuals - Concentration

Name Vitrified MSWI Fly ash TW

Legend

Total Average Deviation Square root of the sum of the squared values of residuals divided by the number of values, over the entire X range. User Average Deviation Square root of the sum of the squared values of residuals divided by the number of values, over the user defined X range. Fractional Average Devi: Square root of the sum of the squared values of residuals divided by the number of values, over the fraction. Note that the Total and User Average Deviation columns are averages as well.

Residual details, c	concentrations
---------------------	----------------

	Residuals as log(model/sample)									
Fraction	8	7	6	5	4	3	2	1	Total Avg	
pН	2.93	4.31	5.75	6.72	7.27	8.05	9.42	11.7	Deviation	
AI	-0.01	1.13	0.84	-0.31	-1.09	-0.33	0.21	0.33	0.23	
As	-0.55	-0.82	1.05	1.48	0.30	0.58	0.65	1.39	0.33	
Ва	0.00	0.48	0.82	0.97	1.15	0.87	-0.28	-1.17	0.29	
Ca	0.00	0.27	0.34	0.37	0.41	0.28	0.11	0.14	0.10	
Cd	0.01	-0.02	-0.07	-0.26	0.12	-0.23	-0.42	0.10	0.07	
CI	0.60	0.99	0.65	0.69	0.00	0.87	0.86	1.11	0.28	
Со	0.00	0.21	1.12	1.52	1.92	0.42	-1.06	0.38	0.37	
CO32-	-	-	-	-	-	-	-	-	-	
Cr	-1.15	-0.37	1.98	0.68	0.25	0.44	-1.09	0.92	0.36	
Cu	-0.03	0.07	0.60	0.59	0.99	1.07	-0.93	-0.03	0.24	
F	-	-	-	-	-	-	-	-	-	
Fe	-0.04	0.16	2.47	0.42	-0.12	0.83	-1.51	1.17	0.41	
В	0.00	0.43	0.66	0.72	0.74	0.51	0.57	0.56	0.20	
Si	0.00	0.92	1.30	1.29	1.27	1.30	0.87	0.60	0.37	
Hg	-	-	-	-	-	-	-	-	-	
к	0.54	1.04	0.70	0.73	0.00	0.88	0.90	1.16	0.29	
Li	0.00	0.35	0.91	0.52	0.41	1.13	1.25	0.43	0.26	
Mg	0.00	0.15	0.31	0.36	0.47	0.11	-0.18	0.04	0.09	
Mn	0.00	0.41	0.73	0.85	1.08	0.64	0.12	-1.48	0.29	
Мо	-0.34	-1.42	-0.55	0.10	1.55	0.35	0.43	0.94	0.31	
Na	0.00	0.41	0.52	0.58	0.60	-0.51	-0.47	-0.99	0.20	
Ni	0.00	0.37	1.26	1.58	2.19	1.05	0.65	0.34	0.41	
Pb	-0.05	-0.07	1.55	0.83	0.45	1.28	-0.71	-0.48	0.30	
Р	-1.17	-1.42	2.16	1.35	1.21	1.83	0.93	1.01	0.51	
Sb	0.00	-0.34	-0.12	-0.50	0.11	-1.05	-0.59	1.35	0.24	
Se	0.52	-0.36	1.03	1.58	0.29	0.53	1.72	0.00	0.34	
Sn	-0.07	0.17	-0.24	0.32	0.04	0.05	-0.27	0.10	0.07	
S	0.15	0.16	0.16	0.15	0.06	0.05	0.00	0.08	0.04	
Sr	0.00	0.38	0.53	0.56	0.63	0.36	0.20	-0.02	0.14	
U	-	-	-	-	-	-	-	-	-	
v	-1.03	-0.65	1.32	-0.21	-1.01	-1.65	-0.06	-0.12	0.33	
Zn	0.04	-0.01	0.01	0.10	0.91	-0.03	-1.36	-0.13	0.21	
Avg Deviati	0.08	0.12	0.20	0.16	0.17	0.16	0.15	0.15	0.26	

Yellow = own pH All residuals within + 1 or - 1 are considered to represent a good fit.