COMPARISON pH DEPENDENCE DATA WITH MODEL

pH Dependent Leaching Test Model

Industrial F contaminated site

pH Dependent Leaching Test Scenario

Lab Test

E

Extra L/S Simulation

Model Parameters			Available Content					
Entity	Unit	Default	Entity	mg/kg	Entity	mg/kg	Entity	mg/kg
c0		-5.030	Al	1.319E+04	Fe	2728	PO4	40.75
c1		0.7637	As	0.1499	В	8.271	Sb	0.2662
c2		-0.3660	Ba	23.40	Si	1.271E+04	Se	0.02844
c3		0.05515	Br	221.7	Hg	2.006E-07	Sn	1.069
c4		-0.003379	Ca	8.557E+04	к	1.524E+04	SO4	929.5
c5		7.446E-05	Cd	0.07052	Li	23.40	Sr	53.48
Clay	mg/kg	1.900E+04	Cl	1.046E+05	Mg	1.860E+05	Th	2.320E-07
Hydrous Ferric Oxide	mg/kg	180.0	CNT	5.001	Mn	390.3	U	2.380E-07
L/S	L/kg	11.11	Со	3.075	Mo	0.6076	V	0.3282
pE		-0.5000	CO32-	5.010E+04	Na	2.221E+04	W	1.0000
pH		11.50	Cr	5.834	Ni	13.31	Zn	75.39
Solid Humic Acid	mg/kg	2.160E+04	Cu	28.61	NO3	210.0		
Simulated Low L/S	L/kg	0.4000	F	7784	Pb	9.780		

Name	End Member	Log(K) Reaction
ettr_ss	AsO4_Ettringite_ss	26.79 AsO4_Ettringite_ss + 1 H+ + 8 H2O -> 2 Al[OH]4- + 3 AsO4-3 + 6 Ca+2 + 1 ettr_ss
	Ba_Ettringite_ss	4.008 Ba_Ettringite_ss + 4 H+ + 8 H2O -> 2 Al[OH]4- + 6 Ba+2 + 3 SO4-2 + 1 ettr_ss
	BO3_Ettringite_ss	-46.87 BO3_Ettringite_ss + 7 H+ + 8 H2O -> 2 AI[OH]4- + 6 Ca+2 + 3 H2BO3- + 1 ettr_ss
	CrO4_Ettringite_ss	-8.592 CrO4_Ettringite_ss + 4 H+ + 8 H2O -> 2 Al[OH]4- + 6 Ca+2 + 3 CrO4-2 + 1 ettr_ss
	Ettringite_ss	-10.99 Ettringite_ss + 4 H+ + 8 H2O -> 2 AI[OH]4- + 6 Ca+2 + 3 SO4-2 + 1 ettr_ss
	Li-Ettringite_ss	-5.699 Li-Ettringite_ss + 4 H+ + 8 H2O -> 2 AI[OH]4- + 5 Ca+2 + 2 Li+ + 3 SO4-2 + 1 ettr_ss
	MoO4_Ettringite_ss	-9.592 MoO4_Ettringite_ss + 4 H+ + 8 H2O -> 2 AI[OH]4- + 6 Ca+2 + 3 MoO4-2 + 1 ettr_ss
	Sb[OH]6Ettringite	-33.80 Sb[OH]6Ettringite_ss + 7 H+ + 17 H2O -> 2 Al[OH]4- + 6 Ca+2 + 3 Sb[OH]6- + 1 ettr_ss
	SeO4-2_Ettringite_s	4.408 SeO4-2_Ettringite_ss + 4 H+ + 8 H2O -> 2 AI[OH]4- + 6 Ca+2 + 3 SeO4-2 + 1 ettr_ss
	Sn[OH]4-2_Ettringit	-69.18 Sn[OH]4-2_Ettringite_ss + 8 H+ + 4 H2O -> 2 Al[OH]4- + 6 Ca+2 + 2 SO4-2 + 1 Sn+2 + 1 ettr_ss
	Sr_Ettringite_ss	4.008 Sr_Ettringite_ss + 4 H+ + 8 H2O -> 2 Al[OH]4- + 3 SO4-2 + 6 Sr+2 + 1 ettr_ss
	VO3_Ettringite_ss	-53.79 VO3_Ettringite_ss + 13 H+ + 2 H2O -> 2 Al[OH]4- + 6 Ca+2 + 3 VO2+ + 1 ettr_ss
	WO4_Ettringite_ss	-9.592 WO4_Ettringite_ss + 4 H+ + 8 H2O -> 2 AI[OH]4- + 6 Ca+2 + 3 WO4-2 + 1 ettr_ss

Minerals	
Name	

AA_Brucite

AA_Calcite

Albite[low]

beta-TCP

Boehmite

AA_Magnesite

AA_Portlandite

Austinite-therm

Ba[SCr]O4[96%SO4]

Ca[OH]2.Sn[OH]2

Ca2Cr[OH]7.3H2O

Ca3[AsO4]2:3H2O

Ca3[OH]2[MoO4]2[c]

AA Tobermorite-I

Antimocrandallite-exp

Arsenocrandallite-therm

AA_CO3-hydrotalcite

AA 2CaO Al2O3 SiO2 8H2O[s]

AA 2CaO Fe2O3 SiO2 8H2O[s]

AA_3CaO_Al2O3_CaCO3_11H2O[s]

Solid Solutions

Log(K)	Reaction
18.18	AA_2CaO_Al2O3_SiO2_8H2O[s] -> 2 Al[OH]4- + 2 Ca+2 + 3 H2O + 1 H2SiO4-2
22.49	AA_2CaO_Fe2O3_SiO2_8H2O[s] -> 2 Ca+2 + 2 Fe[OH]4- + 3 H2O + 1 H2SiO4-2
-24.52	AA_3CaO_Al2O3_CaCO3_11H2O[s] + 4 H+ -> 2 Al[OH]4- + 1 CO3-2 + 4 Ca+2 + 9 H2O
-16.84	AA_Brucite + 2 H+ -> 2 H2O + 1 Mg+2
9.481	AA_Calcite -> 1 CO3-2 + 1 Ca+2
-4.852	AA_CO3-hydrotalcite + 4 H+ -> 2 Al[OH]4- + 1 CO3-2 + 6 H2O + 4 Mg+2
9.359	AA_Magnesite -> 1 CO3-2 + 1 Mg+2
-22.80	AA_Portlandite + 2 H+ -> 1 Ca+2 + 2 H2O
23.86	AA_Tobermorite-I -> 2 Ca+2 + 0.8 H+ + 1.2 H2O + 2.4 H2SiO4-2
85.27	Albite[low] + 8 H2O -> 1 Al[OH]4- + 6 H+ + 3 H2SiO4-2 + 1 Na+
63.00	Antimocrandallite-exp + 8 H2O -> 3 Al[OH]4- + 1 Ca+2 + 3 H+ + 2 Sb[OH]6-
95.56	Arsenocrandallite-therm + 6 H2O -> 3 Al[OH]4- + 2 AsO4-3 + 1 Ca+2 + 7 H+
11.47	Austinite-therm + 1 H+ -> 1 AsO4-3 + 1 Ca+2 + 1 H2O + 1 Zn+2
9.790	Ba[SCr]O4[96%SO4] -> 1 Ba+2 + 0.04 CrO4-2 + 0.96 SO4-2
28.93	beta-TCP -> 3 Ca+2 + 2 PO4-3
14.42	Boehmite + 2 H2O -> 1 Al[OH]4- + 1 H+
-17.00	Ca[OH]2.Sn[OH]2 + 4 H+ -> 1 Ca+2 + 4 H2O + 1 Sn+2
25.30	Ca2Cr[OH]7.3H2O + 1 H2O -> 2 Ca+2 + 1 CrO4-2 + 1 H+ + 3 e-
21.40	Ca3[AsO4]2:3H2O -> 2 AsO4-3 + 3 Ca+2 + 3 H2O
-3.000	Ca3[OH]2[MoO4]2[c] + 2 H+ -> 3 Ca+2 + 2 H2O + 2 MoO4-2

Name

CaMoO4[c]

CaWO4[c]

Co2SiO4

Cuprite

Eskolaite

FeMoO4[s]

Ferrihydrite

Manganite

Ni[OH]2[s]

Pb[OH]2[C]

PbMoO4[c]

Sn[OH]2[s]

ZnSiO3

Ni2SiO4

Fluorite

CaSb[OH]6[s]2

Fe2[MoO4]3[1]

Friedel_salt_CN-HS

Molybdocrandallite-exp

Log(K)	Reaction
7.940	CaMoO4[c] -> 1 Ca+2 + 1 MoO4-2
18.41	CaSb[OH]6[s]2 + 6 H2O -> 1 Ca+2 + 2 Sb[OH]6-
9.000	CaWO4[c] -> 1 Ca+2 + 1 WO4-2
6.289	Co2SiO4 + 2 H+ -> 2 Co+2 + 1 H2SiO4-2
6.990	Cuprite + 2 H+ -> 2 Cu+2 + 1 H2O + 2 e-
139.5	Eskolaite + 5 H2O -> 2 CrO4-2 + 10 H+ + 6 e-
82.02	Fe2[MoO4]3[1] + 8 H2O -> 2 Fe[OH]4- + 8 H+ + 3 MoO4-2
45.00	FeMoO4[s] + 4 H2O -> 1 Fe[OH]4- + 4 H+ + 1 MoO4-2 + 1 e-
16.71	Ferrihydrite + 1 H2O -> 1 Fe[OH]4- + 1 H+
10.96	Fluorite -> 1 Ca+2 + 2 F-
-15.77	Friedel_salt_CN-HS + 4 H+ -> 2 Al[OH]4- + 2 CN- + 4 Ca+2 + 4 H2O
-25.27	Manganite + 3 H+ + 1 e> 2 H2O + 1 Mn+2
86.00	Molybdocrandallite-exp + 6 H2O -> 3 Al[OH]4- + 1 Ca+2 + 7 H+ + 3 MoO4-2
-10.80	Ni[OH]2[s] + 2 H+ -> 2 H2O + 1 Ni+2
7.079	Ni2SiO4 + 2 H+ -> 1 H2SiO4-2 + 2 Ni+2
-8.150	Pb[OH]2[C] + 2 H+ -> 2 H2O + 1 Pb+2
15.80	PbMoO4[c] -> 1 MoO4-2 + 1 Pb+2
1.447	Sn[OH]2[s] + 2 H+ -> 2 H2O + 1 Sn+2
18 69	ZnSiO3 + 1 H2O -> 1 H2SiO4-2 + 1 Zn+2

Lab Test

COMPARISON AND PARTITIONING

Model Comparison: residuals - Concentration

Sample

Name Industrial CN site

Legend

Total Average DeviationSquare root of the sum of the squared values of residuals divided by the number of values, over the entire X range.User Average DeviationSquare root of the sum of the squared values of residuals divided by the number of values, over the user defined X range.Fractional Average DeviationSquare root of the sum of the squared values of residuals divided by the number of values, over the user defined X range.Fractional Average DeviationSquare root of the sum of the squared values of residuals divided by the number of values, over the fraction.Note that the Total and User Average Deviation columns are averages as well.

Residual details, concentrations

Re	siduais as log(mod	del/sample)							
Fraction	8	7	6	5	4	3	2	1	Total Avg
pН	1.85	3.75	7.05	8.00	8.55	9.90	11.7	12.4	Deviation
Al	0.00	0.01	-1.87	-2.11	-2.38	0.10	-0.31	0.45	0.47
As	-0.12	1.27	-1.08	-1.46	-0.57	0.02	0.64	0.51	0.30
Ва	0.01	0.00	0.12	0.18	0.20	0.15	0.13	0.15	0.05
Br	0.27	0.28	0.05	0.04	0.00	0.02	0.10	0.10	0.05
Ca	0.03	0.00	0.01	0.07	0.10	-0.04	-0.32	-0.22	0.05
Cd	0.00	0.11	-0.31	0.48	0.32	0.13	0.54	0.30	0.11
Cl	-0.01	-0.04	-0.05	-0.04	-0.04	-0.02	0.00	0.00	0.01
CNT	0.12	0.27	0.02	0.29	0.16	1.06	0.83	-0.33	0.18
Co	0.00	-0.01	0.09	1.67	2.13	-0.52	0.57	1.11	0.38
CO32-	-	-	-	-	-	-	-	-	-
Cr	-1.54	-1.10	0.81	0.86	0.93	0.92	-0.20	0.53	0.33
Cu	-0.18	-0.51	2.09	1.97	0.59	1.73	0.80	1.05	0.46
F	0.00	0.05	-1.54	-0.89	-0.94	-0.31	-0.70	-0.69	0.28
Fe	-0.03	0.38	0.48	0.39	0.12	0.64	-0.01	0.38	0.13
В	0.00	0.09	0.38	0.55	1.78	2.08	1.13	-1.04	0.40
Si	0.00	0.36	0.67	0.84	1.22	1.35	0.62	1.29	0.32
к	0.01	-0.01	0.00	-0.04	0.02	0.00	-0.01	0.00	0.01
Li	0.01	0.00	0.07	0.12	0.08	0.27	0.01	-0.10	0.04
Mg	0.00	0.00	0.04	0.06	0.15	-1.22	-0.82	-1.27	0.24
Mn	0.00	0.00	0.14	0.56	2.58	3.94	0.91	0.55	0.61
Мо	0.69	1.89	0.17	0.04	0.00	0.55	0.11	-0.47	0.27
Na	0.03	-0.07	-0.07	-0.07	-0.07	-0.09	-0.01	-0.19	0.03
Ni	-0.01	0.05	0.26	0.54	0.65	-1.27	-0.11	1.73	0.29
Pb	-0.04	0.24	1.07	0.73	0.70	0.12	0.88	1.18	0.26
PO4	-	-	-	-	-	-	-	-	-
Sb	0.00	0.42	0.44	0.43	0.18	1.25 <mark></mark>	1.21	-0.48	0.25
Se	0.57	0.56	0.22	0.27	0.52	0.13	0.24	0.00	0.13
Sn	-0.01	0.72	0.21	0.22	0.26	1.07	-0.15	-1.45	0.25
SO4	0.09	0.08	0.44	0.51	0.54	0.94	0.39	-0.03	0.17
Sr	0.02	0.00	0.04	0.09	0.10	0.09	0.00	0.00	0.02
v	-1.47	-0.78	-2.24	-3.26	-0.91	-0.75	-0.59	-0.66	0.57
w	-1.10	0.63	0.67	0.67	0.67	1.18	0.70	1.10	0.31
Zn	0.00	0.13	-0.99	0.58	0.34	0.39	0.62	2.05	0.31
Avg Deviation	0.08	0.10	0.15	0.18	0.17	0.20	0.10	0.15	0.24

Yellow = own pH

All residuals within +1 or -1 are considered to represent a good fit. 0 of coarse the best.

B Phase missing pH 8-12

Sb Actually pretty good description for a difficult element

CN Note description of CN with ettringite substitution!!!