

Object pH Dependent Leaching Test Model

Name

Marine harbour sediment IT pH Dependent Leaching Test Scenario

Lab Test

Cem07_C4FcH12_ss

Extra L/S Simulation

Lab Test								
Model Parameters								
Entity	Unit	Default	Entity	mg/kg	Entity	mg/kg	Entity	mg/kg
c0		-4.620	Al	2895	В	17.64	PO4	2749
c1		-0.3602	As	3.300	Si	1506	Sb	0.1462
c2		0.02238	Ва	18.54	Hg	2.006E-07	Se	0.1038
c3		-0.001288	Ca	8.060E+04	к	565.0	Sn	0.08355
c4		0.0003533	Cd	0.1088	Li	4.886	SO4	1.244E+04
c5		-1.815E-05	Cl	1500	Mg	2.695E+04	Sr	117.3
Clay	mg/kg	3000	Со	5.899	Mn	167.5	V	7.376
Hydrous Ferric Oxid	mg/kg	1700	CO32-	1.844E+05	Mo	0.9057	Zn	435.3
L/S	L/kg	10.75	Cr	3.972	Na	7764		
pE		1.710	Cu	0.5200	Ni	4.092		
рН		8.641	F	10.00	NO3	6.200E-08		
Solid Humic Acid	mg/kg	1224	Fe	7618	Pb	7.389		
Simulated Low L/S	L/kg	0.4000						
Solid Solutions								

NameEnd MemberAFmc_ssCem07_C4AcH11_ss

Log(K) Reaction -24.50 Cem07_C4

Cem07_C4AcH11_ss + 4 H+ -> 1 AFmc_ss + 2 Al[OH]4- + 1 CO3-2 + 4 Ca+2 + 9 H2O

-20.47 Cem07_C4FcH12_ss + 4 H+ -> 1 AFmc_ss + 1 CO3-2 + 4 Ca+2 + 2 Fe[OH]4- + 10 H2O

Minerals					
Name	Log(K)	Reaction	Name	Log(K)	Reaction
AA_Fe[OH]3[am]	16.60	AA_Fe[OH]3[am] + 1 H2O -> 1 Fe[OH]4- + 1 H+	CuHPO4	26.00	CuHPO4 -> 1 Cu+2 + 1 H+ + 1 PO4-3
Antimocrandallite-	63.00	Antimocrandallite-exp + 8 H2O -> 3 Al[OH]4- + 1 Ca+2 + 3 H+ + 2 Sb[OH]6-	Exp_CaCO3_B	21.30	Exp_CaCO3_BaCO3 -> 1 Ba+2 + 2 CO3-2 + 1 Ca+2
Ba[SCr]O4[96%SO4]	9.790	Ba[SCr]O4[96%SO4] -> 1 Ba+2 + 0.04 CrO4-2 + 0.96 SO4-2	Exp_Ni2SiO4	5.498	Exp_Ni2SiO4 + 2 H+ -> 1 H2SiO4-2 + 2 Ni+2
BaSrSO4[50%Ba]	8.221	BaSrSO4[50%Ba] -> 0.5 Ba+2 + 1 SO4-2 + 0.5 Sr+2	Fe_Vanadate	19.18	Fe_Vanadate + 1 H2O -> 0.5 Fe[OH]4- + 1 VO2+ + 0.5 e-
Ca[OH]Sb[OH]6_exp	4.000	Ca[OH]Sb[OH]6_exp + 1 H+ -> 1 Ca+2 + 1 H2O + 1 Sb[OH]6-	Fe2[MoO4]3[2	86.35	Fe2[MoO4]3[2] + 8 H2O -> 2 Fe[OH]4- + 8 H+ + 3 MoO4-2
CaCO3_Li2CO3	21.30	CaCO3_Li2CO3 -> 2 CO3-2 + 1 Ca+2 + 2 Li+	Fluorite	10.96	Fluorite -> 1 Ca+2 + 2 F-
CaCO3_MgCO3-exp	18.02	CaCO3_MgCO3-exp -> 2 CO3-2 + 1 Ca+2 + 1 Mg+2	Laumontite	118.0	Laumontite + 8 H2O -> 2 Al[OH]4- + 1 Ca+2 + 8 H+ + 4 H2SiO4-2
CaCO3_MnCO3-exp	20.78	CaCO3_MnCO3-exp -> 2 CO3-2 + 1 Ca+2 + 1 Mn+2	Manganite	-25.27	Manganite + 3 H+ + 1 e> 2 H2O + 1 Mn+2
CaCO3_SrCO3	19.85	CaCO3_SrCO3 -> 2 CO3-2 + 1 Ca+2 + 1 Sr+2	Ni[OH]2[s]	-10.80	Ni[OH]2[s] + 2 H+ -> 2 H2O + 1 Ni+2
CaSb[OH]6[s]2_exp	19.41	CaSb[OH]6[s]2_exp -> 1 Ca+2 + 2 Sb[OH]6-	NiHPO4	25.00	NiHPO4 -> 1 H+ + 1 Ni+2 + 1 PO4-3
CdHPO4	26.48	CdHPO4 -> 1 Cd+2 + 1 H+ + 1 PO4-3	PATCH_beta-1	28.93	PATCH_beta-TCP -> 3 Ca+2 + 2 PO4-3
Cem07_Al[OH]3[arr	13.76	Cem07_Al[OH]3[am] + 1 H2O -> 1 Al[OH]4- + 1 H+	Pb[OH]2[C]	-8.150	Pb[OH]2[C] + 2 H+ -> 2 H2O + 1 Pb+2
Cem07_Brucite	-16.83	Cem07_Brucite + 2 H+ -> 2 H2O + 1 Mg+2	PbMoO4[c]	15.80	PbMoO4[c] -> 1 MoO4-2 + 1 Pb+2
Cem07_Calcite	8.485	Cem07_Calcite -> 1 CO3-2 + 1 Ca+2	PbOH[Sb[OH]	12.00	PbOH[Sb[OH]6]_exp1 + 1 H+ -> 1 H2O + 1 Pb+2 + 1 Sb[OH]6-
Cem07_Gypsum	4.583	Cem07_Gypsum -> 1 Ca+2 + 2 H2O + 1 SO4-2	Sb[OH]3[s]	32.89	Sb[OH]3[s] + 3 H2O -> 3 H+ + 1 Sb[OH]6- + 2 e-
Co2SiO4	6.289	Co2SiO4 + 2 H+ -> 2 Co+2 + 1 H2SiO4-2	SiO2[a]	24.64	SiO2[a] + 2 H2O -> 2 H+ + 1 H2SiO4-2
CoHPO4[s]	24.48	CoHPO4[s] -> 1 Co+2 + 1 H+ + 1 PO4-3	Willemite	6.289	Willemite + 2 H+ -> 1 H2SiO4-2 + 2 Zn+2
Cr[OH]3[A]	68.13	Cr[OH]3[A] + 1 H2O -> 1 CrO4-2 + 5 H+ + 3 e-	ZnHPO4	24.48	ZnHPO4 -> 1 H+ + 1 PO4-3 + 1 Zn+2

1000000

· 100000

pH dependent concentration of Calcium

pH dependent concentration of Barium

100

10

DTL

ā

5

Ē

8

(J/gm

(mg/L)

1000

2 1000

10

0.01

ာ ¹⁰⁰⁰

1/6 100

Clav

Ē 100

tion

5 0.1

10

0.1

0.0

0.001

14

Model Comparison: residuals - Concentration

Name Marine harbour sediment IT

Legend

Total Average Deviation Square root of the sum of the squared values of residuals divided by the number of values, over the entire X range. User Average Deviation Square root of the sum of the squared values of residuals divided by the number of values, over the user defined X range. Fractional Average Devi Square root of the sum of the squared values of residuals divided by the number of values, over the fraction. Note that the Total and User Average Deviation columns are averages as well.

Residual details, concentrations

	Residuals as lo	og(model/sar	mple)							
Fraction	8	7	6	5	3	4	2	1	Total Avg	
pН	2.16	4.13	6.12	7.12	8.58	8.70	9.92	11.8	Deviation	
AI	0.01	0.54	-0.85	-0.46	0.20	0.55	0.35	0.27	0.17	
As	0.47	0.59	0.91	0.83	-0.62	-0.01	-0.59	-0.05	0.21	
Ва	0.01	0.40	0.25	-0.34	-0.81	-1.03	-0.74	-0.44	0.21	
Ca	0.00	0.24	0.24	-0.29	0.11	-0.38	-0.31	-0.16	0.09	
Cd	0.00	0.69	0.38	0.11	-0.51	-0.52	-0.36	0.04	0.14	
Cl	-	-	-	-	-	-	-	-	-	
Со	0.01	0.34	0.33	0.96	0.38	0.88	-0.71	-1.48	0.27	
CO32-	-	-	-	-	-	-	-	-	-	
Cr	-0.62	-0.34	0.85	0.84	0.98	1.00	1.20	0.98	0.31	
Cu	1.38	0.75	-0.15	-0.20	-0.18	-0.16	0.11	0.06	0.20	
F	-	-	-	-	-	-	-	-	-	
Fe	0.00	0.29	-1.27	-1.46	0.55	0.88	0.19	0.52	0.28	
В	0.12	0.22	0.26	0.33	0.32	0.42	-0.03	0.02	0.09	
Si	-0.71	-0.16	-0.14	-0.04	0.12	0.09	0.01	0.91	0.15	
Hg	-	-	-	-	-	-	-	-	-	
к	-0.36	-0.15	-0.17	-0.15	-0.01	-0.05	0.06	0.16	0.06	
Li	0.01	0.73	1.08	1.19	1.48	1.38	1.68	1.45	0.43	
Mg	0.01	0.39	0.19	-0.70	-1.43	-1.68	-0.68	0.83	0.32	
Mn	0.01	0.16	-0.90	-1.45	-0.68	-1.27	1.03	1.57	0.37	
Мо	1.75	0.10	0.01	0.38	0.15	0.20	-0.03	0.06	0.23	
Na	-0.10	0.05	-0.01	-0.03	-0.04	-0.02	-0.17	-0.37	0.05	
Ni	0.00	0.42	0.83	1.18	1.38	1.34	1.01	-0.49	0.34	
Pb	-0.01	1.32	0.00	-0.79	-1.03	-1.05	-0.90	-0.26	0.29	
PO4	-	-	-	-	-	-	-	-	-	
Sb	0.32	0.16	0.15	0.32	0.66	0.32	0.83	-0.09	0.15	
Se	0.11	0.11	0.05	-0.10	-0.03	-0.18	0.31	0.11	0.05	
Sn	0.10	-1.34	-0.97	-1.35	-0.42	-0.55	0.12	-0.01	0.28	
SO4	-	-	-	-	-	-	-	-	-	
Sr	0.01	0.17	0.32	-0.33	-0.52	-0.86	-0.87	-0.73	0.20	
Th	-	-	-	-	-	-	-	-	-	
U	-	-	-	-	-	-	-	-	-	
V	-0.06	0.56	0.94	0.08	-1.29	-0.82	-1.95	-1.10	0.37	
Zn	0.01	-0.44	0.45	1.02	1.39	1.31	0.65	0.47	0.30	
Avg Deviati	0.10	0.11	0.12	0.15	0.16	0.17	0.16	0.14	0.22	

Yellow = own pH All residuals within + 1 or - 1 are considered to represent a good fit.